The metric simultaneous diophantine approximations over formal power series
نویسندگان
چکیده
منابع مشابه
HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملTowards a General Theory of Simultaneous Diophantine Approximation of Formal Power Series: Multidimensional Linear Complexity
We model the development of the linear complexity of multisequences by a stochastic infinite state machine, the Battery–Discharge– Model, BDM. The states s ∈ S of the BDM have asymptotic probabilities or mass μ∞(s) = P(q,M) −1 ·q−K(s), whereK(s) ∈ N0 is the class of the state s, and P(q,M) = ∑ K∈N0 PM (K)q −K = ∏M i=1 q i/(qi − 1) is the generating function of the number of partitions into at m...
متن کاملhypertranscendental formal power series over fields of positive characteristic
let $k$ be a field of characteristic$p>0$, $k[[x]]$, the ring of formal power series over $ k$,$k((x))$, the quotient field of $ k[[x]]$, and $ k(x)$ the fieldof rational functions over $k$. we shall give somecharacterizations of an algebraic function $fin k((x))$ over $k$.let $l$ be a field of characteristic zero. the power series $finl[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملSuccessive Minima and Best Simultaneous Diophantine Approximations
We study the problem of best approximations of a vector α ∈ R n by rational vectors of a lattice Λ ⊂ R whose common denominator is bounded. To this end we introduce successive minima for a periodic lattice structure and extend some classical results from geometry of numbers to this structure. This leads to bounds for the best approximation problem which generalize and improve former results.
متن کاملTest Sets of the Knapsack Problem and Simultaneous Diophantine Approximations
This paper deals with the study of test sets of the knapsack problem and simultaneous diophantine approximation. The Graver test set of the knapsack problem can be derived from minimal integral solutions of linear diophantine equations. We present best possible inequalities that must be satisfied by all minimal integral solutions of a linear diophantine equation and prove that for the correspon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2003
ISSN: 1246-7405
DOI: 10.5802/jtnb.394