The metric simultaneous diophantine approximations over formal power series

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Towards a General Theory of Simultaneous Diophantine Approximation of Formal Power Series: Multidimensional Linear Complexity

We model the development of the linear complexity of multisequences by a stochastic infinite state machine, the Battery–Discharge– Model, BDM. The states s ∈ S of the BDM have asymptotic probabilities or mass μ∞(s) = P(q,M) −1 ·q−K(s), whereK(s) ∈ N0 is the class of the state s, and P(q,M) = ∑ K∈N0 PM (K)q −K = ∏M i=1 q i/(qi − 1) is the generating function of the number of partitions into at m...

متن کامل

hypertranscendental formal power series over fields of positive characteristic

let $k$ be a field of characteristic$p>0$, $k[[x]]$, the ring of formal power series over $ k$,$k((x))$, the quotient field of $ k[[x]]$, and $ k(x)$ the fieldof rational functions over $k$. we shall give somecharacterizations of an algebraic function $fin k((x))$ over $k$.let $l$ be a field of characteristic zero. the power series $finl[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Successive Minima and Best Simultaneous Diophantine Approximations

We study the problem of best approximations of a vector α ∈ R n by rational vectors of a lattice Λ ⊂ R whose common denominator is bounded. To this end we introduce successive minima for a periodic lattice structure and extend some classical results from geometry of numbers to this structure. This leads to bounds for the best approximation problem which generalize and improve former results.

متن کامل

Test Sets of the Knapsack Problem and Simultaneous Diophantine Approximations

This paper deals with the study of test sets of the knapsack problem and simultaneous diophantine approximation. The Graver test set of the knapsack problem can be derived from minimal integral solutions of linear diophantine equations. We present best possible inequalities that must be satisfied by all minimal integral solutions of a linear diophantine equation and prove that for the correspon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux

سال: 2003

ISSN: 1246-7405

DOI: 10.5802/jtnb.394